6-METHOXYFLAVONOIDS FROM BRICKELLIA CALIFORNICA

RÜDIGER MUES*, BARBARA N. TIMMERMANN, NOBUO OHNO and TOM J. MABRY The Department of Botany, The University of Texas at Austin, Austin, TX 78712, U.S.A.

(Received 20 November 1978)

Key Word Index—Brickellia californica; Compositae; Eupatorieae; Alomiinae; 6-methoxyflavonol methyl ethers, glycosides and sulfates; 6-methoxyflavone methyl ethers.

Abstract—Two new and eleven known 6-methoxyflavonoids were identified in leaf tissue of *Brickellia californica*. The new flavonols are eupatin 3-SO₃ Ca_{1/2} and patuletin 3-SO₃K. The known compounds include the flavones hispidulin and eupafolin and their respective 7- and 4'-monomethyl ethers and the flavonols; spinacetin, eupatin, patuletin 3-glucoside and 3-galactoside, and eupatolitin 3-galactoside.

INTRODUCTION

The New World genus Brickellia, with ca 100 species, is one of the largest taxa in the tribe Alomiinae (Eupatorieae) of the Compositae. Although the species are distributed from the Canadian border, southward through the western US and Mexico and sparingly into Central and South America, the greatest concentration is in the southwestern US and Mexico. This report is the first of a series on the flavonoid chemistry of Brickellia and describes the isolation and characterization of 13 6-methoxyflavonoids including two new sulfated flavonois from Brickellia californica (T. & G.) Gray.

RESULTS

Leaves of Brickellia californica were extracted with aqueous methanol and the concentrated extract partitioned between water-chloroform and water-ethyl acetate. The CHCl₃ and EtOAc layers yielded 6-methoxyapigenin (1) [1-4] (hispidulin); 6-methoxyapigenin 7-methyl ether (2) [4-7] (cirsimaritin); 6-methoxyapigenin 4'-methyl ether (3) [3, 8-11] (pectolinarigenin); 6-methoxyluteolin (4) [3, 12-14] (eupafolin); 6-methoxyluteolin 7-methyl ether (5) [15, 16] (cirsiliol); 6-methoxyluteolin 4'-methyl ether (6) [17] (desmethoxycentaureidin); 6-methoxyquercetin 3'-methyl ether (7) [18, 19]

(spinacetin); and 6-methoxyquercetin 7,4'-dimethyl ether (8) [20] (eupatin). Three glycosides were isolated from the EtOAc and water layers: patuletin (6-methoxyquercetin) 3-glucoside (9) and patuletin 3-galactoside (10) [18, 21, 22], and eupatolitin (6-methoxyquercetin 7-methyl ether) 3-galactoside (11) [21, 23]. Glycosides 9 and 10 were isolated as a mixture and determined by MS of their permethyl ethers.

Two new sulfated flavonols were isolated from the water layer: eupatin 3-SO₃Ca_{1/2} (12) and patuletin 3-SO₃K (13). The ¹H NMR spectrum of 12 in DMSO exhibited three methoxyl signals at δ 3.81, 3.89 and 3.93, in addition to a broad singlet at δ 6.4 (H-8), a doublet (J = 9 Hz) at 7.04 (H-5'), a double doublet (J = 2.5 and)9 Hz) at 7.82 (H-6') and a doublet (J = 2.5 Hz) at 7.68 (H-2'). When 12 and 13 were hydrolysed with either 0.1 N TFA or sulfatase, they yielded, respectively, eupatin and patuletin. The sulfate group in the hydrolysate gave a precipitate with BaCl₂ and the cations in the same solution were determined to be Ca and K, respectively, by atomic absorption spectroscopy. Since both 12 and 13 were purple when viewed on paper over UV light and hydrolysed to known aglycones with free 3-hydroxyl groups, at least one sulfate group could be assigned to C₃ in both compounds. Moreover electrophoretic migrations on paper for both 12 and 13 were in

Hispidulin (1) R, R₁, R₂ = H Cirsimaritin (2) R = Me; R₁, R₂ = H Pectolinarigenin (3) R, R₁ = H; R₂ = Me Eupafolin (4) R, R₂ = H; R₁ = OH Cirsiliol (5) R = Me; R₁ = OH; R₂ = H Desmethoxycentaureidin (6) R = H; R₁ = OH; R₂ = Me

Spinacetin (7) R_3 , R_4 , $R_6 = H$; $R_5 = Me$ Eupatin (8) R_3 , $R_5 = H$; R_4 , $R_6 = Me$ Patuletin 3-glc (9) $R_3 = glc$; R_4 , R_5 , $R_6 = H$ Patuletin 3-gal (10) $R_3 = gal$; R_4 , R_5 , $R_6 = H$ Patuletin R_3 , R_4 , R_5 , $R_6 = H$ Eupatolitin R_3 -gal (11) $R_3 = gal$; $R_4 = Me$; R_5 , $R_6 = H$ Eupatolitin R_3 , R_5 , $R_6 = H$; $R_4 = Me$ Eupatin R_3 -SO $_3$ Ca $_{1/2}$ (12) $R_3 = SO_3$ Ca $_{1/2}$; R_4 , $R_6 = Me$; $R_5 = H$ Patuletin R_3 -SO $_3$ K (13) $R_3 = SO_3$ K; R_4 , R_5 , $R_6 = H$

^{*} Permanent address: Fachrichtung 16.1-Botanik, Universität des Saarlandes, 66 Saarbrücken, West Germany.

accord with monosulfates. That only one sulfate group was present in 12 was confirmed when methylation with diazomethane followed by hydrolysis of the sulfate group gave 3-hydroxy-5,6,7,3',4'-pentamethoxyflavone: methoxyl ¹H NMR signals at δ 3.94, 3.98, 4.00, 4.01 and 4.06, H-8 at 6.82 (s(br)), H-2' at 7.86 (d, J=2 Hz), H-5' at 7.04 (d, J=9 Hz) and H-6' at 7.86 (dd, J=2 and 9 Hz); MS: M⁺· m/z 388 (80%) for C₂₀H₂₀O₆, M — Me m/z 373 (100%) and B₂ m/z 165 (85%). The latter B₂ ion, [C₆H₃(OMe)₂CO], requires two methoxyl groups in the B-ring. Since compound 13 exhibited the same electrophoretic mobility as did 12, it must also contain only one sulfate group and must therefore be patuletin 3-sulfate.

EXPERIMENTAL

Plant material. Leaves and vouchers of B. californica were collected in Fort Davis, Chisos Mountains, Texas (A. M. Powell 3177, 3228, 916). Voucher specimens are deposited in the Herbarium, Sul Ross University, Alpine, Texas. All plant material was air-dried prior to extraction.

General techniques. Column chromatography employed polyamide, Polyclar AT (GAF Corp) and Sephadex LH-20 (Pharmacia); PC and electrophoresis were carried out on Whatman 3MM paper. Precoated cellulose plates (E. Merck); polyamide, Polygram, Polyamid-6 (Macherey-Nagel and Co.) and Si gel 60 GF-254 (E. Merck) were used for TLC. PLC was carried out with microcrystalline cellulose (E. Merck) and polyamide MN-Polyamid-DC 11 (Macherey-Nagel and Co.). The solvent systems were: BPMM₁, (C₆H₆-petrol (65-110°)-MeCOEt-MeOH, 60:26:3.5:3.5); $BPMM_2$ (C_6H_6 -petrol (65-110°)-MeCOEt-MeOH, 60:26:7:7); BMM (C₆H₆-MeCOEt-MeOH, 4:3:3); CAA (CHCl₃-Me₂CO-HCO₂H, 9:2:1); BPA (C_6H_6 -Py-HCO₂H, 36:9:5); TBA (t-BuOH-HOAc-H₂O, 3:1:1) and n-BAW, upper layer (n-BuOH-HOAc-H₂O, 4:1:5). Visualization of the flavonoids on paper and TLC plates was either by UV light + NH₃ or by spraying with NA (Naturstoffreagenz-A, Carl Roth, Germany) in MeOH. Hydrolyses were carried out with 0.1 N TFA on a steam cone for 30 min for the sulfated flavonoids and 50 min for the flavonoid glycosides. Mps were not corr. The analysis of Ca and K was carried out on a Perkin Elmer 306 spectrophotometer. All the flavonoids were purified over Sephadex LH-20 using MeOH or 80% aq. MeOH prior to spectral analyses (see Tables 1-5) by standard procedures [24, 25].

Extraction, purification and identification of flavonoids from Brickellia californica. Ground leaf material of Brickellia californica (65 g) was extracted \times 5 with 1 l. aq. MeOH (80 and 50 %) until the extract was colorless. The extracts were combined and evapd under red. pres. until only H_2O remained. The aq. layer was extracted with (1) 1 l. CHCl₃ and (2) 1.2 l. EtOAc.

The CHCl₃ extract (1) was chromatographed over a polyamide column (7.5 × 100 cm; 560 g) packed in the elution solvent. The column was eluted with (1) CHCl₃-MeOH-MeCOEt-2,4-pentanedione (20:10:5:1) and (2) CHCl₃-MeOH-MeCOEt-2,4-pentanedione (1:1:0.5:0.1). Cirsimaritin (2) and pectolinarigenin (3) eluted together and were further sep. on a small polyamide column with BPMM₁. Cirsiliol (5) and desmethoxycentaureidin (6), found in low concn (8 mg of each), were separated by PLC on polyamide with BPMM₂ while 40 mg of yellow needles of hispidulin (1), mp 235° (dec.), were obtained.

The EtOAc extract (2) was chromatographed on a polyamide column using the same conditions as above. Eupatin (8), 15 mg, was isolated from a polyamide column using CHCl₃-MeOH-MeCOEt-2,4-pentanedione (20:10:5:1), as yellow needles, mp 245°. Eupafolin (4) and spinacetin (7) were further separated on a polyamide column with MeCOEt-MeOH-2,4-pentanedione (10:5:1). Eupatolitin 3-galactoside (11) eluted separately from patuletin 3-glucoside (9) and 3-galactoside (10). The latter two compounds (6 mg) could not be separated by PC, TLC or column chromatography. UV spectra clearly indicated a patuletin 3-glycoside and after hydrolysis of the mixture, the aglycone was identified as patuletin and the sugars as glucose and galactose. MS of the permethyl ethers and mobility of the natural products on TLC established the presence of two monoglycosides rather than a diglycoside.

	Table 1. Chromatographic data $(R_r s)$	100 and colours) for fla	avonoids of Brickellia californica*
--	---	--------------------------	-------------------------------------

		Cellu	ulose				Sil	ica	Colours		
	HC)Ac				amide	g		UV	UV/NH ₃	UV/NA
Compound	15%	40 %	TBA	n-BAW	BMM	BPMM ₂	CAA	BPA	(350)†	(350)†	(254)†
Hispidulin (1)	8	43	92	91	61	10	48	42	р	w-y	w-ol-y
Cirsimaritin (2)	13	56	96	95	81	53	82		p	w-y	w-o
Pectolinarigenin (3)	13	56	96	95	80	44			p	p	p
Eupafolin (4)	2	23	70	75	36	3		21	p	y	or-y
Cirsiliol (5)	5	38	83	86	42	75			p	У	or-y
Desmethoxycentaureidin (6)	5	39		86	71		49	39	p	p	w-ol
Spinacetin (7)	3	26	67	77	58	6			y	y	ol-g
Eupatin (8)	5	37	75	84	76	39	57	48	у	y	g
Patuletin 3-glc (9)	39	65	60	61	27	0	3		p	y	or-y
Patuletin 3-gal (10)	39	65	60	61	27	0	3		p	у	or-y
Patuletin	2	18	55	69	33	1	28	15	ol-y	ol-y	or-y
Eupatolitin 3-gal (11)	46	79	60	66	43	10	1	4	p	y	or-y
Eupatolitin	2	28	52	71	60	8	37	30	y	У	or-y
Eupatin 3-SO ₃ Ca _{1/2} (12)	60	85	44	56	2	0	3	2	p	p	p
Patuletin 3-SO ₃ K (13)	36	67	28	48	0	1	10	0	p	ŷ	or-y

^{*}The chromatograms (TLC) were developed in one dimension with: cellulose microcrystalline Merck; polyamide MN (polygram) and Si gel GF 254 Merck; all solvent systems are described in the Experimental.

[†] UV, long wavelength 350 nm; short wavelength 254 nm. Colours are indicated as follows: p = purple; y = yellow; ol = olive; or = orange; g = green; w = weak. NA refers to Naturstoffreagenz A in MeOH.

Table 2. UV-data for flavonoids from Brickellia californica*

	MeOH + H				OMe		Cl ₃	AlCl	-HCl	Na	OAc N	laOA	:-H,ВО ₃
Compound	(λ max, nr	n) (λ max,	nm)	(λ ma	ıx, nm)	(λ ma	x, nm)	(λ ma	x, nm)	(λ ma	ıx, nm)	(λ m	ax, nm)
Hispidulin (1)	_	334 2	274	390 274	326	358 280sh	296	352 260sh	296	382 302	326sh 274	338	276
Cirsimaritin (2)	_	330 2	274	380 272	290sh	358 258sh	296	352 260sh	294	378	272	332	274
Pectolinarigenin (3)		330 2	.74	366 274	290sh	354 292	300sh 258sh	370 274	300sh	370 274	300sh	334	274
Eupafolin (4)	_	344 2 252	272	396 264	330sh	416 298 <i>sh</i>	335sh 272	362 260	280	394 268	330sh	366	262
Cirsiliol (5)	_	340 2 235sh	272	400 262	338sh	374 258sh	276	366 258	282	394	270	356	272
Desmethoxycentaureidin (6)	_	340 2 238sh	.72	380 268	298sh 238sh	370 280	292sh 260	362 258	286	372	272	342	274
Spinacetin (7)	_	364 2 254	.74sh	394 270	330sh	420 266	300sh	420 304 <i>sh</i>	365sh 266	380	266	364	256
Eupatin (8)	_	362 2	.56	408 266	335sh 230sh	416 306sh	365sh 266	416 302 <i>sh</i>	366sh 266	392	256	362	256
Patuletin 3-glc (9) Patuletin 3-gal (10)	_	354 2 254	266sh	412 272	324	428 272	302sh	378 266	300sh	396 270	330sh	376	260
Patuletin	_	368 2 256	72sh	420 242	334 <i>sh</i>	458	270	430 264	378 <i>sh</i>	400 272	336sh	390	262
Eupatolitin 3-gal (11)		358 2 258	.68sh	410	278	440	278	376 270	284sh	430	267	378	262
Eupatolitin	www	368 2 256	76sh	434	284	450 274	326sh	432 268	378 <i>sh</i>	394	258	386	262
Eupatin $3-SO_3Ca_{1/2}$ (12)	362 272 266	sh 336 2 250sh	86	394 276	326	376 276	300sh 268	370 278	300sh 266	342 256	270	346 256	268 <i>sh</i>
Patuletin 3-SO ₃ K (13)	368 256	348 2 256	68sh	404 270	336	434 304 <i>sh</i>	334sh 276	372 266	274sh	386 270	326sh	378	262

^{*} All UV spectra were recorded using standard procedures [24, 25].

The H₂O remaining after the CHCl₃ and EtOAc extractions yielded the following flavonoids when chromatographed over Sephadex LH-20 using 80% aq. MeOH and MeOH: additional 10 mg of eupatolitin 3-galactoside (11), 5 mg of a mixture of patuletin 3-glucoside (9) and 3-galactoside (10), eupatin 3-SO₃Ca_{1/2} (12) (6 mg) and patuletin 3-SO₃K (13) (4 mg). Additional material of 12 and 13 was obtained from another *Brickellia* species (*B. laciniata*) in order to complete the structure studies described here. All the flavonoids of *B. laciniata* will be reported later.

The presence of a sulfate group in both 12 and 13 was indicated by high voltage electrophoresis (1.5 ky) on Whatman 3 MM paper $(27 \times 46 \text{ cm})$ for 1.5 hr at pH 1.9 (HCO₂H-HOAc-H₂O, 33:147:1820). 12 and 13 both migrated 3.5 cm from the origin, typical for monosulfates.

Hydrolysis of 12. 5 mg of 12 were hydrolysed in 5 ml of 0.1 N TFA on a steam cone for 30 min. 1.5 mg of 12 was hydrolysed with 20 mg of sulfatase from limpets, type V, 1000 units (Sigma—8629) at 37° for 3 hr. EtOAc extraction of both hydrolysates yielded eupatin. The $\rm H_2O$ layer yielded a white ppt. of BaSO₄ upon addition of BaCl₂.

Methylation of eupatin 3-SO₃Ca_{1/2} (12). 12 (20 mg) in 5 ml of ice-cooled DMSO was treated with 20 ml of an Et₂O soln con-

taining a 30-molar excess CH_2N_2 . The stoppered reaction flask was covered with aluminium foil and stirred at room temp. for 24 hr. The reaction soln was checked for permethylation by spot-paper testing with $FeCl_3$ after removal of Et_2O with N_2 . The reaction was repeated $\times 5$ before methylation was complete. Then the Et_2O was removed under a stream of N_2 and the DMSO evapd under high vacuum. The methylated derivative, on hydrolysis with 0.1 N TFA in a steam cone for 30 min, gave (after purification over Sephadex LH-20) 3-hydroxy-5,6,7,3',4'-pentamethoxyflavone and sulfate.

Acknowledgements—We thank Dr. A. Michael Powell from Sul Ross State University, Alpine, Texas, for plant collections and identifications; Dr. B. L. Turner, University of Texas at Austin, and Professor Hans Becker, University of Heidelberg, for helpful discussions and assistance; Dr. J. A. Holcombe and Mr. R. M. Oliver, University of Texas at Austin, for cation determinations. This work was supported by NSF Grant DEB 76-09320, NIH Grant HD-04488 and the Robert A. Welch Foundation Grant F-130. R. M. thanks the Fulbright-Commission for a Travel Grant and is indebted to Prof. H. D. Zinsmeister, Universität des Saarlandes, for his efforts to make this research stay at U.T. possible.

[†] The UV spectra of sulfated flavonoids with added reagents are best compared with the spectrum of the compound in MeOH-HCl not MeOH. Rules for the UV spectral analysis of sulfated flavonoids are presently being formulated.

Compound	Mʻ	[M -H]+	[M - Me]	[M -18] ⁺	[M -HCO]*	[M COMe]*	[A ₁ - Me] '	[A ₁ -MeCO]	[A ₁ -MeCO - CO]*	[B ₁] *	[B ₂]*
Hispidulin (1)	300	299	285	282	271	257	167	139	111	118	121
-	(100)	(24)	(76)	(60)	(25)	(73)	(33)	(44)	(12)	(40)	(26)
PDM-Hispidulin (1)	351	350	336	333	322	308	201	173	145	135	138
	(64)	(20)	(100)	(12)	(24)	(10)	(23)	(50)	(31)	(32)	(25)
PDM-Cirsimaritin (2)	348	347	333	330	319	305	198	170	142	135	138
	(48)	(7)	(100)	(3)	(3)	(3)	(9)	(27)	(8)	(21)	(11)
Pectolinarigenin (3)	314	313	299	296	285	271	167	139	111	132	135
	(100)	(11)	(93)	(15)	(22)	(69)	(19)	(21)	(10)	(45)	(12)
PDM-Cirsiliol (5)	381	380	366	363	352	338	198	170	142	168	171
	(26)	(4)	(100)	(2)	(2)	(1)	(2)	(10)	(2)	(4)	(2)
Desmethoxycentaureidin (6)	330	329	315	312	301	287	167	139		148	151
	(100)	(18)	(85)	(26)	(32)	(66)	(25)	(32)		(11)	(8)
PDM-Spinacetin (7)	414	413	399	396	385		201	173	145		168
-	(78)	(45)	(100)	(29)	(1)		(9)	(17)	(11)		(12)
PDM-Eupatin (8)	411	410	396	393	382	368	198	170	142	165	168
•	(87)	(49)	(100)	(35)	(2)	(2)	(4)	(7)	(1)	(2)	(6)
Patuletin	332	331	317	314	303	289	167	139	111	134	137
	(100)	(20)	(24)	(59)	(18)	(98)	(6)	(6)	(2)	(4)	(36)
Eupatolitin	346	345	331	328	317	303	181	153	125		137
•	(100)	(18)	(13)	(42)	(14)	(96)	(3)	(11)	(2)		(40)

^{*} MS were recorded at 70 eV, source temp. 200° and probe temp. from 50 to 425°. Values are given in m/z and in parentheses the $\frac{9}{6}$ abundance relative to the base peak. The A_1 , B_1 and B_2 terminology for the fragments is given in ref. [26].

Table 4. MS-data for flavonoid glycosides from Brickellia californica*

Compound	М *	[Agly† +2]'	[Agly† +H]†	[Agly†]+	[Agly+ + 2 - Mc]*	[Agly+ + H - Me]+	[Agly† Me] *	$[A_1]^*$	$[A_1 - 15]^+$	[A ₁ 43]*	$[B_2]^+$
Mixture of PDM-Patuletin 3-glc(9) and PDM-Patuletin 3-gal (10)	630 (< 1)	401 (15)	400 (45)	399 (100)	386 (5)	385 (14)	384 (44)	216 (3)	201 (10)	173 (15)	171
Mixture of PM-Patuletin 3-glu (9) and PM-Patuletin 3-gal (10)	606 (4)	389 (50)	388 (100)	387 (10)	374 (21)	373 (57)	372 (5)	210 (2)	195 (7)	167 (10)	165 (25)
PDM-Eupatolitin 3-gal (11)	627 (<1)	398 (46)	397 (100)	396 (31)	383 (19)	382 (37)	381 (15)	213 (3)	198 (12)	170 (17)	171 (20)
Hexose-fragment peaks											
PDM-glycosides:	(20)	196 (21)	161 (15)	149 (13)	133	122 (20)	114 (46)	107 (75)	95 (28)		
PM-glycoside:	218 (18)	187 (22)	155 (14)	143 (13)	127 (20)	116 (21)	111 (41)	101 (70)	89 (25)		

^{*} Spectra were recorded under the same conditions as described in Table 3.

Table 5. NMR spectra of Brickellia californica flavonoids*

												- OM	:†	
Compound	H-2′	H-6′	H-5'	H-3′	H-8	H-3		ugar H ₂ '-H ₆ '	4′	CCl ₄	7	4'	C ₆ D ₆	7
(1)	7.46 d (9.0)	7.46 d (9.0)	6.58 d (9.0)	6.58 d (9.0)	6.26	6.04				3.46				
(8)	7.60 d (2.5)	$ \begin{array}{c} 7.64 dd \\ \begin{pmatrix} 2.5 \\ 9.0 \end{pmatrix} $	6.86 d (9.0)	(3.2)	6.52				3.88	3.94	3.72	$\Delta = + 0.56$	$\begin{array}{c} 3.90 \\ \Delta = +0.04 \end{array}$	$\Delta = +0.48$
(11)	7.32 <i>d</i> (2.5)	$7.72 dd$ $\begin{pmatrix} 2.5\\ 9.0 \end{pmatrix}$	6.82 d (9.0)		6.52		5.62 d (7)	3.4–3.9 m	•	3.92	3.74		3.70 $\Delta = +0.22$	3.16 $\Delta = +0.58$

^{*} Spectra were recorded in CCl_4 and C_6D_6 (only OMe signals are recorded for this solvent) on a Varian HA 100 spectrometer. Values are given in ppm (δ -scale) relative to TMS as an internal standard. Numbers in parentheses denote coupling constants in Hz. Signals are singlets unless otherwise stated: d = doublet; dd = doublet; m = multiplet.

[†] Agly: Aglycone fragment.

[†] Some OMe signal assignments may need to be interchanged especially in CCl₄. Additional material to record the spectra of these compounds was obtained from *B. laciniata*, a species still under investigation.

REFERENCES

- 1. Herz, W. and Sumi, Y. (1964) J. Org. Chem. 29, 3438.
- Bhardwaj, D. K., Neelakantan, S. and Seshadri, T. R. (1966) Indian J. Chem. 4, 173.
- 3. Kupchan, S. M., Sigel, C. W., Hemingway, R. J., Knox, J. R. and Udayamurthy, M. S. (1969) Tetrahedron 25, 1603.
- Dillon, M. O., Mabry, T. J., Besson, E., Bouillant, M. L. and Chopin, J. (1976) Phytochemistry 15, 1085.
- Brieskorn, C. H. and Biechele, W. (1969) Tetrahedron Letters 2603.
- 6. Wallace, J. W. (1974) Phytochemistry 13, 2320.
- 7. Wollenweber, E. (1977) Phytochemistry 16, 295.
- Wollenweber, E. (1974) Biochem. Physiol. Pflanz. (BPP) 166, 425.
- 9. Wollenweber, E. (1975) Biochem. Syst. Ecol. 3, 47.
- 10. Jay, M., Gonnet, J. F., Wollenweber, E. and Voirin, B. (1975) Phytochemistry 14, 1605.
- Vendantham, T. N. C., Subramanian, S. S. and Harborne, J. B. (1977) Phytochemistry 16, 294.
- Brieskorn, C. H. and Michel, H. (1968) Tetrahedron Letters 3447.
- Krishnaswamy, N. R., Seshadri, T. R. and Tahir, P. J. (1968)
 Indian J. Chem. 6, 676.
- Brown, D., Asplund, R. O. and McMahon, V. A. (1975) Phytochemistry 14, 1083.

- Brieskorn, C. H. and Biechele, W. (1971) Arch. Pharm. 304, 557.
- Morita, N., Shimizu, M. and Arizawa, M. (1973) Phytochemistry 12, 421.
- 17. Bohlmann, F. and Zdero, C. (1967) Tetrahedron Letters 3239.
- 18. Zane, A. and Wender, S. H. (1961) J. Org. Chem. 26, 4718.
- Dreyer, D. L., Tabata, S. and Horowitz, R. M. (1964) Tetrahedron 20, 2977.
- Kupchan, S. M., Sigel, C. W., Knox, J. R. and Udayamurthy, M. S. (1969) J. Org. Chem. 34, 1460.
- Smith, D. M., Glennie, G. W. and Harborne, J. B. (1971) Phytochemistry 10, 3115.
- 22. Williams, C. A. (1978) Phytochemistry 17, 729.
- Quijano, L., Malanco, F. and Rios, T. (1970) Tetrahedron 26, 2851.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer, New York.
- Harborne, J. B., Mabry, T. J. and Mabry, H. (eds.) (1975)
 The Flavonoids. Chapman & Hall, London.
- Mabry, T. J. and Markham, K. R. (1975) The Flavonoids (Harborne, J. B., Mabry, T. J. and Mabry, H., eds.) pp. 78– 126. Chapman & Hall, London.